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ABSTRACT 

We discuss the formation of nontopological solitons in a second-order phase 

transition in the early Universe. Ratios of dimensionless coupling constants in 

the Lagrangian determine their abundance and mass. For a large range of pa- 

rameters, non-topological solitons can be cosmologically significant, contributing 

a significant fraction of the present mass density of the Universe. 

Submitted to Physical Review Letters 

* Work supported by the Department of Energy, contract DE-AC03-76SFOO515. 



Non-topological soliton solutions of classical field theories were introduced a 

number of years ago by Rosen,l and by Friedberg, Lee, and Sirlin.2 In the recent 

literature, variations on this theme include Q-balls,3 cosmic neutrino balls,4 quark 

nuggets,5 and soliton stars6 Unlike magnetic monopoles and cosmic strings, 

which arise in theories with non-trivial vacuum topology, non-topological solitons 

(hereafter, NT%) are rendered stable by the existence of a conserved Noether 

charge carried by fields confined to a finite region of space. The minimum charge 

of the stable soliton depends upon ratios of coupling constants,2 and in principle 

can be very small (of order one). Although the properties of non-topological 

solitons have been studied by a number of authors,lB6 scenarios for actually pro- 

ducing such objects in the Universe have not been discussed. In this letter, we 

consider the possibility of forming NTSs during a phase transition in the early 

Universe. 

In the context of renormalizable theories ,7 the simplest NTS solution arises 

from the interaction between a real scalar field u and a complex scalar 4 with 

Lagrangian L: = ld,$12 + (l/2)(d1a)2 - U, where 

q41,a> = +p2 -u;)2+h/912(o--m)2++uo)3uo+gld/4+A; (1) 

the constant A is adjusted to give U = 0 at the absolute minimum of the potential. 

An important feature of this potential is the explicit breaking of the discrete 

symmetry Q c+ -u driven by the +cr coupling term. It is this term that requires 

us to include the cubic term for the real scalar field and the 141” term in the 

Lagrangian (even if they are absent at tree level). Although these terms are 

traditionally neglected in analyses of NTSS,~~~ as we discuss below, inclusion of 
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the cubic term is crucial for solitogenesis. To understand the structure of the 

NTS it is sufficient to consider the limit g = 0. Notice that while + is massless at 

the local minimumof the potential (a = ao), at the global minimum (o = a-) the 

field 4 has a mass rn$ = h(a- -ar~)~. Thus, a configuration of massless 4 particles 

trapped inside a region with tr = cro (the local minimum), separated from the 

true vacuum Q = Q- by a wall of thickness H 0;’ will be stable. The larger mass 

in the cr = Q- vacuum prevents the 4 particles from escaping the Q = ao bag. In 

order to make this statement more quantitative, we have to compare the energy 

of the soliton of charge Q with the energy of Q free 4 particles propagating in the 

u = Q- vacuum. This can be done by introducing the dimensionless variables2 

A and B such that, a(t,r) = ooA(r), 4(t,r) = 2-1/200B(r)e-‘W1. In terms of A 

and B the energy of the NTS configuration is 

wQ E=? 

+ ;(A2 - 1)2 + &BZ(a - 1)’ + :(A - 1)’ + C]r2dr, (2) 

(assuming spherical symmetry) where a 3 X2/X1, and we have used the definition 

of the conserved charge Q = 47rwai s B2r2dr. The constant C EE A/Xraz = 

-(1/8)(A? - 1)2 - (a/3)(A- - 1)3, where A- E a-/o0 = -(l + 2a)/2 - [(l + 

2a)2 + 8a]‘i2/2 is the scaled o field in the true vacuum. For an estimate of the 

energy we introduce the trial functions B = (Be/r) sinwr 8(R - r); A = 1 (for 

r<R),A=(l-A-) e--(r--R)/l + A- (for r 2 R). R is the “radius” of the NTS, 

given in terms of w by wR = T. The above trial functions satisfy exactly the 

equations of motion inside the “bag”. Using these trial functions we find that 
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the energy must satisfy the inequality 

(3) 

The three terms in Eq. (3) represent the kinetic energy of the confined com- 

plex field, the false vacuum energy of the NTS interior, and the surface energy 

of the wall separating the interior from the true vacuum. For large Q, unless 

Xz/Xr < 1, the volume energy dominates the surface energy. In this limit (which 

we will assume henceforth) the NTS has radius and mass found by minimizing 

the energy: R = (Q/4A)‘i4, M = (4rr/3)&Q3/4A1/4 . 

The next step is to compare the energy in Eq. (3) with the energy of Q free 

4’s in the true vacuum, Efree = Qh1/2aolA- - 11. The NTS will be stable so long 

as its energy is less than Efree. This occurs whenever 

Q 2 Qmin = 123fA-C l)4$. 

Ifa = 0.15, then A = 0.6Xrao4, and we find Qmin = 18Xr/h2, Mmin = 

46(Xl/h3’2)Oo, Rmin = 1.7h-“2a,1. The potential for a = 0.15 is shown in 

Fig. 1. 

A few comments are in order. It is possible that quantum corrections will give 

a small mass for the 4 particles inside the bag (i.e., g # 0). The above calculation 

may be easily extended to cover this case, * but here we will only consider the case 

with massless particles inside the bag. The condition that the soliton interior is 

in the false vacuum limits the range of allowed coupling constants, although the 

range is not very restrictive.* 
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Now consider the evolution of the vacuum through the cosmological phase 

transition. In the limit h = X2 = 0, the reflection symmetry is exact, and it is 

well known that once the temperature of the Universe drops below the critical 

value (T, = 2ao), infinite (and finite) regions of minima cr = fao form with stable 

domain walls separating domains of degenerate vacua. These domain walls soon 

dominate the energy density of the Universe, leading to contradictions with the 

observed isotropy of the cosmic radiation background (unless ao 5 10 MeV).” 

However, a small energy density difference between the two vacua (X2 # 0) causes 

regions of false vacuum to shrink, leading to the eventual disappearance of the 

wall system, with the Universe everywhere in the true vacuum.Qp1o If the shrinking 

walls survive to sufficiently low temperatures, they become impermeable to the 

passage of q3 particles from the false to true vacuum. As a result, if the number 

. of 6 particles inside a contracting bag is larger than Qmin, the outward kinetic 

pressure exerted on the walls will halt the collapse, rendering the false vacuum 

bags (NTSs) stable. 

As the temperature drops below T N T,, thermal fluctuations of the ~7 field 

become large, with regions rapidly (compared to the expansion timescale) inter- 

converting between (+) (false vacuum, cr = +a~) and (-) (true vacuum, u = a-). 

These fluctuating regions typically have volume Vt = (203, where [ is the corre- 

lation length. Below Tc the transition rate between the two vacua is proportional 

to exp(-FM/T), h w ere FM is the free energy of the fluctuation, FM = UM x Vt, 

and UM is the energy barrier separating the two vacuum states (see Fig. 1). 

When the temperature drops below the Ginzburg temperature, TG, the tran- 

sition rate becomes less than the expansion rate: the fluctuations “freeze out” 
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because there is insufficient thermal energy available to drive the transiti0n.l’ At 

this temperature, the correlation length islo I N XT’TG’. If, for simplicity, 

we approximate the potential below T = T, by its zero-temperature form, we find 

the Ginzburg temperature is TG N V$IM; below this temperature the thermal 

transition rate is exponentially suppressed.12 

The relative probability of a fluctuation of the u field ending up in a (+) 

domain (denoted as p+) or in a (-) domain (denoted as p-) is very sensitive to 

the energy difference between the two vacua (E A, see Fig. 1); the false vacuum, 

with larger free energy, becomes progressively more improbable as A grows. So 

long as the system is in equilibrium, the relative population is given by the 

Boltzmann formula, p+/p- = exp( -A F/T) where A F = A x Vt is the difference 

in free energies of the two minima. This relation holds so long as the system is 

*in equilibrium, which requires that the transition rate between vacua is greater 

than the expansion rate, i.e., T > TG. Below TG the relative probability is 

frozen at its value at TG, p+/p- = exp(-AF(TG)/TG). Since AF = A X V., and 

TG = Vt x UM, below TG, p+ /p- = exp(-A/UM). The argument of the exponent 

Will depend upon ratios of dimensionless coupling constants in the Lagrangian. 

The structure of vacuum domains below TG is well-known from percolation 

studies. If the probability to be in a given vacuum state is greater than a critical 

probability, pc (pc = 0.31 for a simple cubic lattice), an infinite cluster of that 

vacuum will appear. r3 It is clear that the structure formed in the phase transi- 

tion changes entirely if both vacuum domains or only one is above percolation 

threshold. For example, in the case of exact degeneracy (h = X2 = 0) both vacua 

are equally probable, p+ = p- = 0.5, and percolate, creating the familiar infinite 
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domain wall problem. Q On the other hand, if only the true vacuum percolates, 

the Universe would be filled with only finite clusters of false vacuum. Given the 

above value of pC, the false vacuum percolates whenever A/UM 5 0.8; for the 

potential of Eq. 1, this occurs for a S 0.13. 

First consider the case where p+ < 0.31. Since this is below percolation 

threshold, isolated bags of false vacuum are formed in the true vacuum “sea”. 

If r is the number of false vacuum cells in a cluster (r N (L/2c)3, where L is 

the cluster “diameter”), the density of r-clusters per lattice site is known13 from 

Monte Carlo simulations to be f(r) = br-‘v5 exp(-cr). The constants b and c 

are not known, but for p+ + pC, c + 0, and for p+ + 0, b -+ 0. For intermediate 

values of p+ we expect both b, c - 1. The number density of r-clusters produced 

at T = TG is then simply n(r) = f (r)/Vt. Th us, the typical size of a false vacuum 

bubble is L H 2(, with larger bubbles exponentially suppressed. 

Once formed, the bubbles will be acted upon by several forces: 1.) a surface 

tension due to the domain walls proportional to X:‘2, which tends to straighten 

out curved walls; 2.) a vacuum pressure pvac = A, which acts to collapse regions 

of (+I (f 1 1 a se vacuum; 3.) a thermal pressure p4 due to the massless d’s in the 

(+) vacuum (assuming T 5 m4), which expands regions of (+) vacuum. The 

evolution of the system of domain walls and vacuum bubbles is quite complicated, 

and the dynamics depends upon ratios of coupling constants Xr, X2, and h. To 

elucidate a scenario for production of NTSs, we will assume two conditions are 

satisfied: (i) TG 2 rn$, i.e., h is not too small, so that 4 particles are trapped 

inside the (+) domains at the Ginzburg temperature; (ii) p4 = (7r2/45)Tz S 

Pvac = A, i.e., Xz is not too small, so that the thermal pressure due to the 
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massless d’s in the (+) d omain is always smaller than the vacuum pressure. (If 

condition(E) is not satisfied, the (+) domains will grow and possibly percolate; 

for this case, see the discussion below.) Given (i) and (ii), (+) domains formed in 

the transition with Q 1 Qmin will survive to form stable NTSs, while those with 

Q I Qmin will evaporate and disappear. Since large domains of (+) vacuum are 

exponentially rare for p+ < pc, to first approximation the only surviving domains 

have Q = Qmin. 

The typical number of relativistic 4 particles inside an r-cluster is N(r) = 

rv,ffn+Ve, where qeff is the effective excess ratio of particles over anti-particles,14 

and at TG, n4 cz <(3)TG/n2. Setting N(r,i,) = Qmin gives t,in = QminXf/qeR* 

We find that the ratio between the number density of NTSs with N(rmin) pro- 

duced at the Ginzburg temperature to the entropy density, s = 2?r2g,T$/45, is 

_ (with g* = 100) 

n(Qmin) = n(rtnin) _ 3 x 10-3b 

S s - 

312 
eV[-cQminXf/~eff]. (5) 

The present energy density of NTSs (with Q = Qmin), PNTS = Mminn(Qmin), 

contributes a fraction of closure density 

hTsho2 
312 

QZr (&) 1'4 eXP[-CQmd~/~e~], (6) 

where ho reflects the uncertainty in the Hubble constant (1 2 ho 2 l/2). For 

example, if we set b = c = 1 and, as before, take a = 0.15, then flNTsho2 z 6 x 

108(h~e~/X:)3/2(oo/TeV) exp[-18X~/h2~,~]. W e consider two possibilities: a) If 

the effective asymmetry14 is comparable to the baryon asymmetry (qe~ = lo-‘) 

8 



for the NTS density in the range 2 x loss S flhg s 2, we find the constraint 

1.7 x loss 5 -(X:/h) S 2.5 x lo-" for uo = 1 TeV, and 4.2 x lo-’ 6 (X:/h) 5 

4.6 x loss for uo = 1Or2 TeV. The corresponding masses are MNTS = 0.2h-’ TeV 

and MNTS = 3 x 101’hwl TeV. b) If veff = 1, for the NTS density to lie in the 

above range requires 1.0 5 (Xi/h) s 1.2 for uo = 1 TeV, and 1.6 5 (AZ/h) 5 1.7 

for uo = 1012 TeV. We note that since the density is exponentially sensitive to 

the ratio At/h, for fixed qeff the range of parameter space for cosmologically 

significant NTSs is rather narrow. By the same token, the mass scale uo required 

to produce abundant NTSs is essentially unconstrained. 

Next we consider the case where both the (+) and (-) domains percolate, 

0.31 < p+ < 0.69. In a given region, the Universe will be composed primarily 

of two interlocking infinite (+) and (-) d omains of complicated topology. The 

typical distance between the walls, as well as the typical curvature radius, is 

initially L(t) H ~[(TG). 

In the evolution of the wall system, the early motion of the walls is domi- 

nated by the surface tension, which rapidly (compared to the expansion time) 

acts to increase the wall separation L(t). This continues until the vacuum 

pressure, pvac = A = (8/3)Xzuz, becomes comparable to the surface pressure, 

pe N (2/3)X~‘2u~/L, i.e., when L(t) = Lo rr X:‘2/4X2uo. At this point, the 

vacuum pressure begins to accelerate the walls into the false vacuum regions 

and the infinite (+) domain will initially be pinched off into a series of finite 

(+) bubbles of typical size Lo. lo The trapped charge in a typical bubble is thus 

N(Lo) N (4zr/3)@‘Z4(TG) = 8 x 10-3qe~X~‘2/X~, while, from Eq. (4), the min- 

imum charge for a stable NTS is Qmin = 205Xz/h2. N(Lo) will be larger than 
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Q min if hXT’4qtg/XE ;S 160. If condition (i) is imposed, h cannot be too small. 

We also note that if h is much larger than X1 and X2, quantum corrections driven 

by the W l”( U-UO)~ term will dominate the potential at finite temperature, so we 

assume that neither X2 nor Xr is much smaller than h. With these assumptions, 

it is unlikely that the charge inside a bubble of radius Lo will exceed Qmin. If 

this is so, then as in the ‘below percolation case’ stable NTS will be formed from 

rare large clusters consisting of many cells, and the only qualitative difference 

in above and below percolation is that the effective cell size above percolation is 

LO rather than c. In the limit A2 < Xr, UM = (X1/8)4, and [ = u~‘XT~‘~. 

The fundamental cell volume above percolation is a factor of (Lo/~)~ N Xf/64Xq 

larger (above percolation Xz/Xr < l), and tmin, the minimum number of cells 

necessary for a cluster to have N > Qmin, is correspondingly smaller. 

This research was supported in part by DOE contract DE-AC03-76FOOSi5 

at SLAC, and by DOE and NASA at Fermilab. 

10 



Figure Caption 

Fig. 1: The potential of Eq. (1) with a = X2/X1 = 0.15 and (jc$j”) = 0. A- E 

o-/so where u- is the global ‘minimum of the potential. 
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